

... for a brighter future

New phases in the good old manganites

or

Structural trends in oxygen-vacancy-ordered $La_xSr_{1-x}MnO_y$ perovskite manganites and the $A_{4+n}B_{4+n}O_{10+3n}$ homologous series.

Leopoldo Suescun

Neutron and X-ray Scattering Group - Materials Science Division Argonne National Laboratory, Argonne, IL, USA

Materials Design Lab. – Physics Department Northern Illinois University, DeKalb, IL, USA

&

Cryssmat-Lab/DETEMA – Facultad de Química Universidad de la República – Montevideo – Uruguay.

A U.S. Department of Energy laboratory managed by The University of Chicago

Overview

- Motivation: Perovskite materials for S.O.F.C. cathodes
- Experimental work and initial results: NPD experiments in the La_xSr_{1-x}MnO_y system.
- Re-focusing: Oxygen-vacancy, charge and orbital ordering in Sr₅Mn₅O₁₃ and Sr₇Mn₇O₁₉
- A new homologous series A_{4+n}B_{4+n}O_{10+3n} built upon BO₅ pyramids and BO₆ octahedra
- Conclusions, take home message.

Perspectives

Solid Oxide Fuel Cell (SOFC):

Device for efficient conversion of chemical energy into electricity.

SOFC cathode materials: *fast oxygen conductivity & electronic conductivity.*

Effects of oxygen/vacancy ordering in cathode materials for SOFC:

Effects of oxygen/vacancy ordering in cathode materials for SOFC:

TOF Diffractometer Setup at former IPNS facility

Schematic Illustration of SEPD/GPPD **BEAM ON** Incident monitor Neutron source 1.5 m Sam Downstream monitor

In-situ neutron diffraction experiment setup

SrMnO_x: In-situ NPD experiment

Initial Interpretation: Starting sample looses oxygen and a phase transition occurs between vacancy ordered phases oT-Sr Mn O and

Reality was more complex and required highresolution X-ray diffraction (APS): Initial sample was two-phase, one of them never reported. The new phase oM-Sr Mn O converts to

La_{0.1}Sr_{0.9}MnO_x: In-situ NPD experiment

Initial interpretation: Sample shows two vacancy ordered 150phases similar to oT and oO that forms consecutively upon reduction 300of oxygen content of initial cubic 450 (vacancy-disordered) dC phase. Time (minutes) 000 000 000 Reality was again more complex: The oT and oO vacancy-ordering patterns are stable in the La_{0.1}Sr_{0.9}MnO_x system. However, 1050 partial vacancy filling is observed in 1200both cases leading to the formation of oT'-(La Sr) Mn O and 00'1350 1.9 2.0 2.1 2.2 2.4 2.3 2.5d-spacing (Å)

(La Sr) Mn O closely related to original oT and oO

La_{0.2}Sr_{0.8}MnO_x: In-situ NPD experiment

Initial (and final) interpretation:

Simple cubic phase converts into ordered phase oT-(La Sr) Mn O .

0.2 0.8 5 5 13

- However vacancy-ordered phase shows significant structural distortions that reduces it's symmetry from tetragonal to monoclinic.
- The distortions are a consequence of a combination of orbital ordering with structural disorder.
- Further studies showed the existence of the phase

0.8 2

5

0.2

NATIONAL LABORATORY

Composition-Temperature-Oxygen content phase diagram

Overview

Motivation: Perovskite materials for S.O.F.C. cathodes

Experimental work and initial results: NPD experiments in the La Sr MnO

Charge ordering in Sr₅Mn₅O₁₃ and Sr₇Mn₇O₁₉

Orbital ordering in Sr₅Mn₅O₁₃ and Sr₇Mn₇O₁₉

Orbital ordering in $Sr_5Mn_5O_{13}$ and $Sr_7Mn_7O_{19}$

Magnetic ordering in $Sr_2Mn_2O_5$ and $Sr_5Mn_5O_{13}$

Pink: Frustration!!!!

Overview

Motivation: Perovskite materials for S.O.F.C. cathodes

Experimental work and initial results: NPD experiments in the La Sr MnO

A new homologous series Sr_{4+n}Mn³⁺₄Mn⁴⁺_nO_{10+3n}

- Building blocks formed by 4 pyramids and n octahedra can be used to generate compounds in the series Sr_{4+n}Mn³⁺₄Mn⁴⁺_nO_{10+3n}
- Members of the series observed to date (n=0, 1 and 3) are formed by symmetrical blocks (the building block displays 2/m symmetry)
- For certain values of n different building blocks lead to different structures, but in some cases a unique pattern is formed that combines two blocks (boxes).
- No compound corresponding to non-unique structural models have been observed so far in the SrMnO_x system.

Suescun L. & Dabrowski B. (2008) Acta Crystallographica Section B, 64, 177-186.

A new homologous series $Sr_{4+n}Mn^{3+}Mn^{4+}O_{10+3n}$

 $Sr_4Mn_4O_{10}$ structure can be built based on n=0 block formed by 4 pyramids oriented along +x,-y,+y,-x along the lattice constants (or l.c. of them). The 4-pyramid pattern forms automatically in the orthogonal direction. Sr5Mn5O13 structure can be built based on the n=1 block containing 4 pyramids with one octahedron in the center

A new homologous series Sr_{4+n}Mn³⁺₄Mn⁴⁺_nO_{10+3n}

Sr7Mn7O19 structure can also be built in an analogous manner using a block containing 4 pyramids and 3 octahedra. If the three octahedra are located in the center of the array and the horizontal direction is chosen to build the structure another possible block with alternating pyramids and octahedra is formed in the orthogonal (vertical) direction and viceversa. Both blocks display a symmetrical pyramid/octahedra arrangement.

A new homologous series Sr_{4+n}Mn³⁺₄Mn⁴⁺_nO_{10+3n}

Predicted compounds in the Sr_{4+n}Mn³⁺₄Mn⁴⁺_nO_{10+3n} homologous series

n	$x \text{ in } ABO_x$	Pyramid/octahedra	Cell parameters† (a, b, c, γ, V)	Space group (ideal)†
0	2.5	рррр	$2^{1/2}a_{\rm P} \ 2(2)^{1/2}a_{\rm P} \ a_{\rm P} \ 4V_{\rm P}$	<i>Pbam</i> (55)
1	2.6	ррорр	$5^{1/2}a_{\rm P} \ 5^{1/2}a_{\rm P} \ a_{\rm P} \ 5V_{\rm P}$	P4/m (83)
2	2.667	ppoopp	$2a_{\rm p} \ 10^{1/2}a_{\rm p} \ a_{\rm p} \ \gamma = 108.4 \ 6V_{\rm p}$ $2^{1/2}a \ 3(2)^{1/2}a \ a \ 6V_{\rm p}$	P2/m (10) Pbmm (Pmma 51)
3 4	2.714‡ 2.75	роррор ррооорр/роророр рроооорр/ророорор роорроор	$5^{1/2}a_{\rm P} \ 10^{1/2}a_{\rm P} \ a_{\rm P} \ \gamma = 98.2 \ 7V_{\rm P}$ $2(2)^{1/2}a_{\rm P} \ 10^{1/2}a_{\rm P} \ a_{\rm P} \ \gamma = 116.6 \ 8V_{\rm P}$ $2^{1/2}a_{\rm P} \ 4(2)^{1/2}a_{\rm P} \ a_{\rm P} \ 8V_{\rm P}$	P2/m (10) P2/m (10) Pbam (55)

Samples with composition SrMnO_{2.667} (corresponding to n=2 member of the series) have been obtained as a mixture of Sr₅Mn₅O₁₃ (SrMnO_{2.6}, n=1) and Sr₇Mn₇O₁₉ (SrMnO_{2.714}, n=3).

Samples with compositions SrMnO_x 2.7<x<2.8 (oxygen content corresponding to n=3, n=4 and n=5) are a mixture of Sr₇Mn₇O₁₉ (SrMnO_{2.714}, n=3) and a vacancy-disordered phase with approximate composition SrMnO_{2.82} (unpublished).

Suescun L. & Dabrowski B. (2008) Acta Crystallographica Section B, 64, 177-186.

A new homologous series $Sr_{4+n}Mn^{3+}Mn^{4+}O_{10+3n}$

Other systems showing $A_{4+n}B_{4+n}O_{10+3n}$ -type ordering:

LaCuOx & NdCuOx systems

- N=0 observed for d⁹ Cu²⁺ (pyramids)
- N=1 observed for d⁹ Cu²⁺ and d⁸ Cu³⁺ (octahedra). Large monoclinic distortion observed
- No phases with N>2 observed

Bringley et al, *Letters to Nature* (1990) 347, 263-265 Chen et al, *Inorg Chem.* (1995) 34, 2077-2083.

CaMnOx system

Ca₂Mn₂O₅ (N=0) structure has been determined

■HREM and ED studies of CaMnO_{2.667} and CaMnO_{2.75} have shown formation of local structures with unit cells compatible with those proposed for N=2 ($Ca_6Mn_6O_{16}$) and N=4 ($Ca_8Mn_8O_{22}$) members of the series respectively

A neutron powder diffraction of CaMnO_{2.75} was inconclusive possibly due to the coexistence of multiple ordering arrangements

Poeppelmeier et al *J. Solid State Chem.* (1982) 45, 79-79. Reller et al *Proc. R. Soc. Lond. A* (1984) 349, 223-241. Chiang & Poeppelmeier, *Mater Lett.* (1991) 12, 102-108.

Size and charge of A-site cation appears to play a key role in the stabilization of different structural patterns.

Conclusions

- New phases in the La_xSr_{1-x}MnO_y system were found to display systematic structural trends like charge and orbital ordering of Mn⁴⁺O₆ octahedra and Mn³⁺O₅ elongated pyramids that allowed to formulate the new homologous series with general formula Sr_{4+n}Mn³⁺₄Mn⁴⁺_nO_{10+3n} also observed in CaMnO_x and La/NdCuO_x systems.
- Oxygen-vacancy-ordering is directly related to charge and orbital ordering in manganites. The higher degree of disorder in the cation sublattice the more favorable the oxygen-vacancy-disordered phases and the lower the orderdisorder transition temperature.

Take home message

- Don't get desperate for results (yet!). It takes patience, perseverance and maybe a bit of stubbornness.
- Enjoy it in any possible way, if results don't come and you get too frustrated with the science remember that you live ~ ½ hour drive away from one of the most beautiful cities in the world.

Perspectives

- Settle down in Uruguay
- Get all that unprocessed data published
- Visit Argonne before April 2009
- Continue performing experiments
 - In-situ NPD experiments at SNS
 - In-situ Synchrotron X-ray diffraction experiments at Brazilian Synchrotron Laboratory

Contributors to this work

- Bogdan Dabrowski & J.D. Jorgensen/Ray Osborn (supervisors)
- At Materials Science Lab. Physics Department NIU:
 - Konrad Šwierczek, Omar Chmaissem (also at ANL)
 - Jim Mais, Steve Remsen, Ben Stillwell (synthesis, transport)
 - Stan Kolesnik (magnetism)
- At IPNS
 - SEPD staff: Simine Short, Joe Fieramosca, Ryoji Kiyanagi, Bob von Dreele
 - GPPD staff: Evan R. Maxey, Jim Richardson (RIP)
- At APS
 - Yang Ren (11 ID-C), Brian H. Toby, Jun Wang
- At Universidad de la República, Facultad de Química (Montevideo, Uruguay)
 - Alvaro W. Mombrú, Ricardo Faccio, Helena Pardo, Luciana Fernández

Use of the Advanced Photon Source and Intense Pulsed Neutron Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Work at NIU was supported by the NSF Grant No. DMR-0302617, the U.S. Department of Education and the U.S. Department of Transportation.

In memoriam

James D. Jorgensen, 1948 - 2006

Questions? Comments?

