
New phases in the good old 
manganites

or

Structural trends in oxygen-vacancy-ordered 
LaxSr1-xMnOy perovskite manganites and the 
A4+nB4+nO10+3n homologous series.

Leopoldo Suescun
Neutron and X-ray Scattering Group - Materials Science Division  
Argonne National Laboratory, Argonne, IL, USA

Materials Design Lab. – Physics Department 
Northern Illinois University, DeKalb, IL, USA

&

Cryssmat-Lab/DETEMA – Facultad de Química 
Universidad de la República – Montevideo – Uruguay.



Overview

 Motivation: Perovskite materials for S.O.F.C. cathodes

 Experimental work and initial results: NPD experiments in the LaxSr1-xMnOy 
system.

 Re-focusing: Oxygen-vacancy, charge and orbital ordering in Sr5Mn5O13 and 
Sr7Mn7O19 

 A new homologous series A4+nB4+nO10+3n built upon BO5 pyramids and BO6 
octahedra

 Conclusions, take home message.

 Perspectives



Solid Oxide Fuel Cell (SOFC):

 Device for efficient conversion of chemical energy into electricity.

 SOFC cathode materials: fast oxygen conductivity & electronic conductivity.
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Effects of oxygen/vacancy ordering in cathode materials 
for SOFC:
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Effects of oxygen/vacancy ordering in cathode materials 
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TOF Diffractometer Setup at former IPNS facility
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In-situ neutron diffraction experiment setup
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SrMnOx: In-situ NPD experiment

 Initial Interpretation: Starting 
sample looses oxygen and a 
phase transition occurs 
between vacancy ordered 
phases oT-Sr

5

Mn
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O

13

 and 

oO-Sr
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Mn

2
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.

 Reality was more complex and required high-
resolution X-ray diffraction (APS): Initial sample 
was two-phase, one of them never reported. 
The new phase oM-Sr
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La0.1Sr0.9MnOx: In-situ NPD experiment

 Initial interpretation: 
Sample shows two vacancy ordered 
phases similar to oT and oO that 
forms consecutively upon reduction 
of oxygen content of initial cubic 
(vacancy-disordered) dCdC phase. 

 Reality was again more complex: 
The oT and oO vacancy-ordering 
patterns are stable in the 
La0.1Sr0.9MnOx system. However, 
partial vacancy filling is observed in 
both cases leading to the formation 
of oT’-(La
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La0.2Sr0.8MnOx: In-situ NPD experiment

 Initial (and final) interpretation: 

Simple cubic phase converts 
into ordered phase  
oT-(La

0.2

Sr

0.8

)

5

Mn

5

O

13

.

 However vacancy-ordered 
phase shows significant 
structural distortions that 
reduces it´s symmetry from 
tetragonal to monoclinic.

 The distortions are a 
consequence of a combination 
of orbital ordering with 
structural disorder. 

 Further studies showed the 
existence of the phase

oO-(La

0.2

Sr

0.8

)

2

Mn

2

O

5

dC

oT

dC

oT

dC

oT



Composition-Temperature-Oxygen content phase diagram
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Suescun L. et al, (2008) Chem. Mater. 20, 1636-1645.
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Charge ordering in Sr5Mn5O13 and Sr7Mn7O19
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Orbital ordering in Sr5Mn5O13 and Sr7Mn7O19

O2

1.860

Mn2

O1

1.914

2.012 1.948

Mn2

O3
O3

O2

O2

1.925

Mn1

O1

O4

1.905

1.925

Mn1

O1

O3
O3

O3

2.058

1.846

1.938

1.921
1.905

1.930

1.930

O1

O2

O2

O12

O12
O12

O22

O12

O22Jahn-Teller 
active Mn3+ 

cations (d4) are 
located in 
elongated 

pyramids with 
dz

2 orbital along 
the apical 
direction

Non J-T 
Mn4+ (d3) 

cations are 
located in 

slightly 
distorted 

octahedra

eg

t2g

octahedra         pyramid

dx2-y2

dz2

dxy

dxz,dyz

Mn3+ d4

eg

t2g

dx2-y2,dz2

dxy,dxz,dyz

Mn4+ d3

octahedro  



Orbital ordering in Sr5Mn5O13 and Sr7Mn7O19
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Magnetic ordering in Sr2Mn2O5 and Sr5Mn5O13
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A new homologous series Sr4+nMn3+
4Mn4+

nO10+3n

 Building blocks formed by 4 
pyramids and n octahedra can 
be used to generate 
compounds in the series 
Sr4+nMn3+

4Mn4+
nO10+3n 

 Members of the series 
observed to date (n=0, 1 and 
3) are formed by symmetrical 
blocks (the building block 
displays 2/m symmetry)

 For certain values of n 
different building blocks lead 
to different structures, but in 
some cases a unique pattern 
is formed that combines two 
blocks (boxes).

 No compound corresponding 
to non-unique structural 
models have been observed 
so far in the SrMnOx system.

Suescun L. & Dabrowski B. (2008) Acta Crystallographica Section B, 64, 177-186.



A new homologous series Sr4+nMn3+
4Mn4+

nO10+3n

Sr4Mn4O10 structure can be built based on n=0 
block formed by 4 pyramids oriented along 
+x,-y,+y,-x along the lattice constants (or l.c. 
of them). The 4-pyramid pattern forms 
automatically in the orthogonal direction.

Sr5Mn5O13 structure can be built based 
on the n=1 block containing 4 pyramids 
with one octahedron in the center

Sr4+0Mn3+
4Mn4+

0O10+3*0=Sr4Mn4O10 Sr4+1Mn3+4Mn4+1O10+3*1=Sr5Mn5O13



A new homologous series Sr4+nMn3+
4Mn4+

nO10+3n
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analogous manner using 
a block containing 4 
pyramids and 3 
octahedra. If the three 
octahedra are located in 
the center of the array 
and the horizontal 
direction is chosen to 
build the structure 
another possible block 
with alternating pyramids 
and octahedra is formed 
in the orthogonal (vertical) 
direction and viceversa. 
Both blocks display a 
symmetrical 
pyramid/octahedra 
arrangement.



A new homologous series Sr4+nMn3+
4Mn4+

nO10+3n

 Predicted compounds in the Sr4+nMn3+
4Mn4+

nO10+3n homologous series

 Samples with composition SrMnO2.667 (corresponding to n=2 member of the series) have 
been obtained as a mixture of Sr5Mn5O13 (SrMnO2.6, n=1) and Sr7Mn7O19 (SrMnO2.714, 
n=3).

 Samples with compositions SrMnOx 2.7<x<2.8 (oxygen content corresponding to n=3, 
n=4 and n=5) are a mixture of Sr7Mn7O19 (SrMnO2.714, n=3) and a vacancy-disordered 
phase with approximate composition SrMnO2.82 (unpublished).

Suescun L. & Dabrowski B. (2008) Acta Crystallographica Section B, 64, 177-186.



A new homologous series Sr4+nMn3+
4Mn4+

nO10+3n

 Predicted compounds with n=2 (Sr6Mn3+
4Mn4+

2O16) show unfavorable features:
                  ppoopp-block poppop-block



CaMnOx system
Ca2Mn2O5 (N=0) structure has been 
determined

HREM and ED studies of CaMnO2.667 and 
CaMnO2.75 have shown formation of local 
structures with unit cells compatible with 
those proposed for N=2 (Ca6Mn6O16) and 
N=4 (Ca8Mn8O22) members of the series 
respectively

A neutron powder diffraction of 
CaMnO2.75 was inconclusive possibly due 
to the coexistence of multiple ordering 
arrangements

Poeppelmeier et al J. Solid State Chem. (1982) 45, 79-79.
Reller et al Proc. R. Soc. Lond. A (1984) 349, 223-241. 
Chiang & Poeppelmeier, Mater Lett. (1991) 12, 102-108.

Other systems showing A4+nB4+nO10+3n-type ordering: 

Size and charge of A-site cation appears to play a key 
role in the stabilization of different structural patterns. 

LaCuOx & NdCuOx systems

 N=0 observed for d9 Cu2+ (pyramids)

 N=1 observed for d9 Cu2+ and d8 Cu3+ 
(octahedra). Large monoclinic 
distortion observed

 No phases with N>2 observed 

Bringley et al, Letters to Nature (1990) 347, 263-265
Chen et al, Inorg Chem. (1995) 34, 2077-2083.



Conclusions
 New phases in the LaxSr1-xMnOy system were found to display systematic 

structural trends like charge and orbital ordering of Mn4+O6 octahedra and 
Mn3+O5 elongated pyramids that allowed to formulate the new homologous 
series with general formula Sr4+nMn3+

4Mn4+
nO10+3n also observed in CaMnOx 

and La/NdCuOx systems.
 Oxygen-vacancy-ordering is directly related to charge and orbital ordering in 

manganites. The higher degree of disorder in the cation sublattice the more 
favorable the oxygen-vacancy-disordered phases and the lower the order-
disorder transition temperature.

Take home message
 Don’t get desperate for results (yet!). It takes patience, perseverance and 

maybe a bit of stubbornness.
 Enjoy it in any possible way, if results don’t come and you get too frustrated 

with the science remember that you live ~ ½ hour drive away from one of the 
most beautiful cities in the world.

 Please, don’t leave Chicagoland without visiting: Fermilab, The Field Museum of
Natural History, Brookfield Zoo, Shed Aquarium, Adler Planetarium, Science and Industry Museum,
Hads-on Science Museum (Aurora), Art Institue of Chicago, Navy Pier, Sears Tower, Hancock Building, Chicago
Public Library, The Magnificent Mile, Millenium Park, Mexican Fine arts Museum, Lincoln Library and Museum (Springfield), Indiana Dunes, 
Wrigley Field, US Cellular Field, Soldier Field, Toyota Park, Bahai Temple (Evanston), Hindu Temple (Geneva), Winsconsin Dells, Downtown Naperville, Naper Settlement, 
etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc, etc…



Perspectives

 Settle down in Uruguay

 Get all that unprocessed data published

 Visit Argonne before April 2009

 Continue performing experiments
– In-situ NPD experiments at SNS
– In-situ Synchrotron X-ray diffraction experiments at Brazilian 

Synchrotron Laboratory
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In memoriam

James D. Jorgensen, 1948 - 2006



Questions? Comments?
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